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Abstract—Deregulated electricity markets in the U.S. currently
use an auction mechanism that minimizes total supply bid costs
to select bids and their levels. Payments are then settled based on
market-clearingprices. Under this setup, the consumer payments
could be significantly higher than the minimized bid costs obtained
from auctions. This gives rise to “payment cost minimization,”
an alternative auction mechanism that minimizes consumer
payments. We previously presented an augmented Lagrangian
and surrogate optimization framework to solve payment cost
minimization problems without considering transmission. This
paper extends that approach to incorporate transmission capacity
constraints. The consideration of transmission constraints com-
plicates the problem by entailing power flow and introducing
locational marginal orices (LMPs). DC power flow is used for
simplicity and LMPs are defined by “economic dispatch” for the
selected supply bids. To characterize LMPs that appear in the
payment cost objective function, Karush–Kuhn–Tucker (KKT)
conditions of economic dispatch are established and embedded
as constraints. The reformulated problem is difficult in view of
the complex role of LMPs and the violation of constraint qual-
ifications caused by the complementarity constraints of KKT
conditions. Our key idea is to extend the surrogate optimization
framework and use a regularization technique. Specific methods
to satisfy the “surrogate optimization condition” in the presence
of transmission capacity constraints are highlighted. Numerical
testing results of small examples and the IEEE Reliability Test
System with randomly generated supply bids demonstrate the
quality, effectiveness, and scalability of the method.

Index Terms—Deregulated electricity markets, electricity auc-
tions, locational marginal price (LMP), mathematical programs
with equilibrium constraints, payment cost minimization, surro-
gate optimization, transmission constraints.

I. INTRODUCTION

I N deregulated U.S. electricity markets (e.g., the day-ahead
markets), independent system operators (ISOs) currently
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use an auction mechanism that minimizes total supply bid1

costs to select supply bids and their levels for energy and ancil-
lary services. This “bid cost minimization” problem is NP-hard
due to its combinatorial nature, but because of its separability,2

it can be effectively solved by using the Lagrangian relax-
ation technique or other mixed-integer programming methods
for near-optimal solutions [1]–[7]. Furthermore with given
demand, existing unit commitment and economic dispatch soft-
ware can be readily adapted to solve the problem by replacing
units with supply bids. After the auction problem is solved,
markets are then settled where payments are calculated based
on uniform market-clearing prices (MCPs) or congestion-de-
pendent locational marginal prices (LMPs).3 The above auction
and settlement mechanisms are inconsistent and consumer
payments could be significantly higher than the minimized total
supply bid cost. This gives rise to “payment cost minimization,”
an alternative auction mechanism that minimizes consumer
payments.4 Illustrative examples have shown that with the same
set of supply bids, payment cost minimization leads to reduced
consumer payments as compared to bid cost minimization
[8]–[15].

Disparate views are held for the two auction mechanisms.
On the one hand, if supply bid prices represent true production

1The term “supply bid” is used here instead of “supply offer” as in our pre-
vious paper [14] to comply with the recent FERC document [Docket Number:
ER06-615-000 (02-1656-027, 029, 030, 031)].

2A problem is separable and can be decomposed into individual subproblems
by using Lagrangian relaxation if both the objective function and the constraints
that couple the subproblems are additive in subproblem variables.

3The issue of “pay-as-bid” versus “pay-at-clearing price” has been widely
discussed in the literature, and many have concluded that under “pay-as-bid,”
suppliers may bid substantially higher than their marginal costs and “would do
consumers more harm than good” [37]. Currently, all ISOs in the U.S. adopt
“pay-at-clearing price” in their day-ahead energy markets. This paper focuses
on U.S. electricity markets, and therefore also adopts the pay-at-clearing price
scheme.

4This is different from minimizing the payments to supply bids, or producer
payments. Consumer payments are the sum of producer payments and conges-
tion revenues. From a different perspective, consumer payment minimization
cares about LMPs at load nodes while producer payment minimization focuses
on LMPs at supply nodes. If transmission capacities are sufficiently large, then
minimizing consumer payments is equivalent to minimizing producer payments.
Otherwise, the two problems are different and may not yield the same solution.
The consumer payment minimization is used here since a major objective of
deregulation is to “work for customers,” i.e., to minimize consumer payments,
not producer payments according to FERC white paper [38]. If congestion rev-
enues were ultimately transferred into benefits to consumers, then minimizing
producer payments might minimize the ultimate cost for consumers. This as-
sumption, however, is questionable since there is no clear relation between con-
gestion revenues and benefits to consumers under ISO’s current practice in-
volving financial transmission rights (FTR) auctions and load serving entities’
billing policies.
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costs, then the bid cost minimization auction maximizes social
welfare. Whether supply bids represent true production costs,
however, is questionable. On the other hand, the reported sav-
ings of payment cost minimization as compared with bid cost
minimization are obtained under the same set of supply bids.
However, suppliers may bid differently under the two auction
mechanisms.5 Regardless of these different views, the assess-
ment of the two auction mechanisms hinges on the availability
of their solution methodologies. While methods for bid cost
minimization abound, few approaches for payment cost mini-
mization have been reported. The difficulties of the latter result
from its distinct feature that market-clearing prices explicitly
appear in the objective function as decision variables in con-
trast to bid cost minimization where market prices are not in-
volved but determined afterwards in an ex post manner. Conse-
quently, market-clearing prices need to be appropriately defined
in formulating the payment cost minimization problem and op-
erationalized in the solution process.

Most of the payment cost minimization references cited above
formulate the problem mathematically but do not provide effec-
tive solution methodologies. Also, most of these references con-
sider uniform MCPs without transmission. A graph search algo-
rithmispresented in [9]assumingsimplebidswithprice-quantity
curve only. A method based on forward dynamic programming
is presented in [11] for small problems with MCPs defined as the
maximum of amortized bid costs (the total energy and fixed costs
divided by the total selected power). LMP and transmission con-
straints are considered in [13] and no solution methodology is
provided. We have recently presented an augmented Lagrangian
andsurrogateoptimizationframeworktosolvepaymentcostmin-
imization problems without considering transmission capacities
[14]. MCPs were defined as the maximum prices of selected bids,
and the definition was operationalized by inequality constraints
on MCPs and bid prices. Augmented Lagrangian relaxation was
used, and in view of the complex role of MCPs in the objective
functionandconstraints,surrogateoptimizationwasusedtosolve
therelaxedproblembyoptimizingsupplybidsoneata time.Inop-
timizingonebid,otherdecisionvariableswereadjustedasneeded
to satisfy the “surrogate optimization condition.” Also, it was
shown that significant reduction of payment cost was obtained
at a relatively small increase of bid cost by using payment cost
minimization as compared to bid cost minimization.6

This paper formulates and solves the payment cost minimiza-
tion problem with transmission capacity constraints for a day-
ahead energy market in the U.S. with given demands by ex-
tending our work in [14].7 The problem is mathematically for-
mulated in Section II. The consideration of transmission compli-

5Suppliers’ behaviors under the two auction mechanisms have been studied
within a game theoretic context in our recent paper [36] without considering
transmission capacity constraints.

6As a consequence of reduced payments, concerns are raised on the lack of
incentives for new generation. Actually the lack of incentive is also discussed
for the current bid cost minimization. We believe the short-term energy market
alone is not sufficient to provide long-term incentive signals for new generation,
and the issue should be addressed by considering capacity markets, long-term
contracts, etc.

7This shall facilitate further study of the payment cost minimization auction,
including comprehensive comparisons with bid cost minimization (which is not
within the scope of this paper).

cates the formulation by entailing power flow and introducing
location-dependent LMPs. For simplicity, transmission losses
are ignored, and DC flow equations are included as constraints
to model power flows. Based on marginal cost pricing, LMPs
are defined by economic dispatch for the selected supply bids.
To operationalize the definition, Karush–Kuhn–Tucker (KKT)
conditions characterizing the economic dispatch are established
and embedded as constraints, resulting in a mathematical pro-
gram with equilibrium constraints (MPEC) [16], [17]. The refor-
mulated problem contains complementarity constraints that are
known to violate constraint qualifications, and involves cross-
product couplings among bids, LMPs, and dual variables of eco-
nomic dispatch such as transmission congestion prices and bid
capacity prices.

Our solution methodology is presented in Section III. To
satisfy constraint qualifications, complementarity constraints
are replaced by the -complementarity ones. In view of the
“pseudo-separability” caused by cross-product coupling among
decision variables, the augmented Lagrangian relaxation and
surrogate optimization framework of [14] is used, and supply
bid subproblems are formed by taking the relaxed problem
as a whole and solved one at a time. In optimizing one bid,
other decision variables may have to be adjusted to satisfy
the surrogate optimization condition. Specific methods for
their adjustments in the presence of transmission capacity
constraints are highlighted. LMPs, congestion prices, capacity
prices, and bid levels are then approximately optimized within
a bid subproblem based on first-order optimality conditions for
the relaxed problem. Numerical testing results in Section IV
demonstrate the quality of the method with small examples,
and effectiveness and scalability of the algorithm based on the
IEEE Reliability Test System with Monte Carlo simulations for
ten randomly selected load profiles and supply bids.

II. PROBLEM FORMULATION

In this section, the payment cost minimization problem with
transmission capacity constraints is formulated for a day-ahead
energy market with given demand and single-block supply bid
curves. For simplicity, transmission losses are ignored and DC
power flow is used to model the transmitted power. Also, since
LMPs appear in the objective function as decision variables,
they need to be appropriately defined and operationalized as
opposed to being a byproduct of optimizations as in bid cost
minimization. For simplicity, startup costs are assumed fully
compensated and the minimum up/down time constraints are
not considered. In the following, the problem formulation
with LMPs defined by economic dispatch is presented in
Section II-A. The KKT conditions characterizing the LMP
definition are presented in Section II-B. These conditions are
then embedded as explicit constraints in the formulation to
form an MPEC.

A. Problem Formulation With LMP Definition

Consider a transmission network with nodes indexed by
, and transmission lines indexed by .

Let denote the index set of nodes connected to node . Line
connects node and node with the direction from
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to , and has reactance and line capacity . The trans-
mitted power in line at hour is denoted by .
The demand of node at hour is given as . There are

supply bids at node . For the th supply bid
at hour , the minimum bid level is , the maximum
bid level is , and the single-block bid price is .
The startup cost is denoted by and is incurred if and only
if the supply bid is turned “On” from an “Off” state at hour .
The market price at node and hour is denoted by .
The problem is to minimize the total consumer payment sub-
ject to power balance constraints, individual supply bid con-
straints, transmission capacity constraints, and the LMP defi-
nition as presented below.

Objective Function: With startup costs fully compensated,
the total payment cost is the sum of MW payments and startup
compensations across the system over a 24-h period, i.e.,

(1)

Power Balance Constraints: Power should be balanced for
each node at each hour, i.e., the net power generation at a node
should equal the net power transmitted out of the node as fol-
lows:

(2)

These local power balance equations at each node will be used
to derive power flow equations and define nodal LMPs to be
presented later in this subsection. By adding up (2) for all nodes
at each hour, the following equations are obtained:

(3)

These system power balance equations with reduced number
as compared to (2) will be used as constraints for the payment
cost minimization problem to be presented at the end of this
subsection.

Supply Bid Level Constraints: The power level of a supply
bid is limited by its minimum and maximum values if the bid is
selected. Otherwise, the power level should be zero. Denote the
selection status of the th bid of node at hour by an index
variable with “1” representing “Selected” or “On,” and
“0” representing “Not Selected” or “Off.” Then the supply bid
level constraints are

(4)
Transmission Capacity Constraints: The transmitted power

in a line cannot exceed the specified capacity of the line at any
hour, i.e.,

(5)

For simplicity, the capacity limits for both directions take the
same absolute value in (5).

DC Power Flow Equations: Following the power flow con-
vention, a reference node is arbitrarily selected to have zero
voltage phase angle. Then the voltage phase angle of node at
hour relative to that of the reference node is denoted by .
DC power flow assumes that the voltage magnitude is the same
for all the nodes, line resistances are ignorable, and the phase
angle differences among nodes are sufficiently small. With these
simplifying assumptions, the transmitted active power in line
at hour is given by [18]

(6)

For each hour, (2) and (6) can be used to eliminate the phase an-
gles, resulting in the system power balance equation (3) and the
following representations of transmitted power as linear combi-
nations of the net power generation at each node [18]:

(7)

The coefficient in (7) denotes the sensitivity of the transmitted
power in line with respect to the net generation at node . It is
also known as power transfer distribution factor (PTDF), and is
determined by network topology, line reactance, and the selec-
tion of reference bus. Equations (3) and (7) are equivalent to (2)
and (6), but with reduced numbers of equations and variables.

LMP Definition by Economic Dispatch: In view of LMPs’
presence in (1) as decision variables, they need to be appro-
priately defined. In ISOs’ current practices, LMPs are byprod-
ucts of the bid cost minimization auction and are determined
in an ex post manner based on economic dispatch for selected
bids. This is consistent with marginal cost pricing that the price
of a product should reflect the cost for producing the last unit
of the product. For the payment cost minimization auction, the
LMPs are part of the decision variables and are to be optimized
along with bid selections in the auction. To apply marginal cost
pricing, LMPs are defined here as marginal costs for the selected
supply bids at each hour, with bid selections to be determined
during the payment cost minimization process. This definition
is consistent with ISOs’ current practices assuming bid selec-
tions have been determined. Based on the sensitivity theorem
of Lagrangian relaxation [19], the LMPs at hour are Lagrange
multipliers associated with the local power balance constraints
(2) in the following economic dispatch problem:

(8)

subject to (2) and (4)–(6) for hour . In this economic dispatch
problem, local power balance constraints (2) plus (6) instead
of the equivalent ones (3) and (7) are used for LMP definition,

is the index set of selected bids at node and hour , and
the decision variables are , , and . Then

is given by the multiplier relaxing (2) for node
and hour , i.e.,

(9)
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The overall payment cost minimization problem is thus to min-
imize the total payment cost (1) subject to (3)–(5) and (7), and
the LMP definition (9) obtained from the economic dispatch
problem (8). Equations (3) and (7) are used for reduced num-
bers of equations and variables as compared to their equivalent
pair (2) and (6).

B. Karush–Kuhn–Tucker Conditions for an MPEC Problem

Since economic dispatch itself is an optimization problem,
the overall problem has a complex two-level structure: eco-
nomic dispatch that defines LMP for selected supply bids at
each hour at the low level, and selecting the bids to minimize
the payment cost at the high level. To manage the complexity
caused by this two-level structure, the KKT conditions that
fully characterize the economic dispatch of the low level are es-
tablished to operationalize the LMP definition (9) following the
ideas of [16] and [17]. For simplicity of presentation, the time
index is omitted in deriving the following KKT conditions.

To completely characterize the economic dispatch problem,
constraints (2) and (4)–(6) are relaxed by using multipliers ,

, , and , respectively. The
Lagrangian of this economic dispatch problem is

(10)

The decision variables are , , and . The following
KKT conditions are obtained [20]:

Primal feasibility:
(2) and (4)–(6) for the hour under consideration.
Dual feasibility:

(11)

Lagrangian optimality:

(12)

and (13)

(14)

Based on the economic interpretation of multipliers,
and in (12), respectively, are minimum

and maximum capacity prices of the th bid at node ; and
and in (13) are congestion prices of line .

Complementarity slackness:

(15)

(16)

and (17)

(18)

The above KKT conditions (2), (4)–(6), and (11)–(18) with
the time index put back then replace the LMP definition
(9) as part of the high-level constraints. After removing the
redundant ones including (2) and (6) which are equivalent
to (3) and (7), the constraints for the high-level payment
cost minimization problem are (3)–(5), (7), and (11)–(18).

The above constraints are further simplified as follows. Equa-
tion (7) is removed after is substituted out in (5), (17), and
(18) to have

(19)

(20)

(21)

Moreover, similar to the derivation of the power flow (7), (13),
(14) can be reduced to the following equation with eliminated
and replaced by :

(22)
The reference node for LMP in (22) can be arbitrary, and for
convenience it is set to be the reference node for voltage phase
angles in (6). It can be seen from (22) that LMPs degenerate
to a uniform price if there is no transmission congestion, i.e.,
congestion prices are zero. Also, (22) is identical to the LMP
decomposition formula currently used by ISOs when transmis-
sion losses are ignored [21]. This is a natural result of using eco-
nomic dispatch to define LMP in payment cost minimization as
done in bid cost minimization [22].

Since (12) is for selected bids only, it is generalized to the
following for all the bids:

(23)
where has been replaced by based on (9). Equation
(23) describes the relationship among , bid prices, and
capacity prices at each node. According to (23), a bid at node

with selected power in-between its minimum and maximum
generation levels (implying ) is a mar-
ginal bid whose price sets LMP, i.e., . Also,
if the bid is selected at its maximum generation level (implying
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), , i.e., LMP is the sum of
the bid price and capacity price. Similarly, if the bid is selected
at its minimum generation level, , im-
plying that the LMP could be lower than the price of a selected
bid.8 This is different from our MCP definition in [14] where
MCP is defined as the highest price of selected bids. Similarly,
(15) and (16) for selected bids are generalized to all the bids by
defining zero capacity prices for those bids that are not selected
as follows:

(24)

(25)

As a result of the above simplification and generaliza-
tion, the overall problem is to minimize the payment
cost (1) subject to (3), (4), (11), and (19)–(25). The de-
cision variables are of bids, s, ca-
pacity prices , and congestion prices

, noting that except bid variables, the rest
are in fact dual variables of the low-level economic dispatch.
The problem is therefore an MPEC [16]. MPEC problems are
known for their violation of the linear independence constraint
qualification9 at any feasible solution, causing difficulties in
applying many nonlinear programming methods [17]. In addi-
tion, our problem with discrete variables is more complicated
than those MPEC problems in the literature with continuous
variables only. Furthermore, while the objective function (1)
and constraints (3), (19), and (22) are additive in terms of bids
and other decision variables, bids are coupled with LMPs,
congestion prices, and capacity prices in “coupling” constraints
(20), (21), and (23)–(25) through cross-product terms. As a
result, the problem is “pseudo-separable” in terms of bids in
contrast to the separable structure of a bid cost minimization
problem, and cannot be directly decomposed into individual
bid subproblems by using a traditional Lagrangian relaxation
scheme.

III. SOLUTION METHODOLOGY

To satisfy constraint qualifications for the above payment
cost minimization problem, complementarity constraints (20),
(21), (24), and (25) are replaced by -complementarity ones
based on a regularization scheme of [28] to be presented
in Section III-A. To manage combinatorial complexity and
improve convergence, augmented Lagrangian is formed by
relaxing coupling constraints and selectively adding quadratic
penalty terms as presented in Section III-B. The non-decompos-
ability difficulty caused by the pseudo-separable formulation
is overcome by using “surrogate optimization” of [23] where
approximate optimization of the relaxed problem is sufficient if
the “surrogate optimization condition” is satisfied as presented
in Section III-C. The relaxed problem is thus optimized with

8This is caused by the “lumpiness” because of the existence of p . As a
result, the energy revenueLMP �p may not cover the bid cost c �p . The
revenue shortage issue will not be discussed in this paper.

9The linear independence constraint qualification requires the gradients of ac-
tive constraints to be linearly independent at an optimal solution [19]. Satisfac-
tion of the constraint qualification implies the existence of a unique Lagrangian
multiplier vector, and is important for many nonlinear programming methods
including Lagrangian relaxation to work.

respect to a particular supply bid one at a time. In optimizing
a bid, other variables may have to be adjusted to satisfy the
surrogate optimization condition as presented in Section III-D.
During the adjustment process, simple analytic solutions
derived from first-order optimality conditions are used as
presented in Section III-E. Multipliers are then updated by
using a surrogate subgradient and an appropriate stepsize with
issues on the estimation of optimal dual values discussed in
Section III-F. Finally, heuristics are used to construct feasible
solutions in Section III-G.

A. Regularization Methods

For an MPEC problem, the violation of constraint qualifica-
tions is caused by complementarity constraints, e.g.,
and [16], [17]. Two approaches have been developed
to overcome the difficulties. The penalization approach replaces
complementarity constraints by having penalty terms in the ob-
jective function [25]–[27]. The regularization approach replaces
complementarity constraints by -complementarity ones, i.e.,

and , for a sufficiently small positive
number [28]–[31]. The introduction of breaks the comple-
mentarity between and , resulting in the satisfaction of the
constraint qualifications. It has been shown that the solution of
the regularized problem approaches the stationary point of the
original MPEC problem as approaches zero under reasonable
assumptions [32].

The above regularization approach is intuitively clear and
easy to apply, and is adopted in this paper. Consequently, (20),
(21), (24), and (25) are replaced by

(26)

(27)

(28)

(29)

The same positive is used in (26)–(29) for simplicity and its
value is iteratively reduced. The use of the above “ -comple-
mentarity constraints” does not change the pseudo-separability
of the problem since those cross-product terms remain in the
formulation.

B. Augmented Lagrangian

The problem with -complementarity constraints will be
solved by using the augmented Lagrangian and surrogate
optimization framework of [14], with enhanced features to
handle the complications caused by transmission capacity
constraints, congestion-related LMPs, and -complementarity
constraints. Let multipliers and
relax (3) and (19), respectively; and relax
(22) and (23), respectively; and , ,

, and relax (26)–(29). To have good
algorithm convergence, quadratic penalty terms for (3), (22),
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and (23) are added to the Lagrangian, resulting in quadratic
terms for bids, LMP, , and [19]. Let be a positive penalty
parameter, then the relaxed problem is (30) at the bottom of the
next page, subject to (4) and (11). In contrast to the derivation
of KKT conditions for economic dispatch in Section II-B, the
simple individual bid level constraint (4) is not relaxed here but
is enforced in the numerical optimization process. The above
relaxed problem has mixed discrete/continuous bids (e.g., level

of the th supply bid at node is either 0 or belongs to
depending on the selection status) and other

continuous decision variables. Its feasible region is thus made
of a combinatorial number of discontiguous “sub-regions,” each
associated with a distinct selection of bids. This, combined with
the fact that the relaxed problem cannot be decomposed into
individual bid subproblems because of its pseudo-separability,
results in difficulties in solving the relaxed problem optimally
as required by a traditional Lagrangian relaxation scheme.

C. Surrogate Optimization

Our approach is not to solve the relaxed problem optimally.
Rather, the relaxed problem is approximately optimized with
respect to a particular supply bid one at a time within the

surrogate optimization framework [23]. The algorithm can be
summarized in three key steps, i.e., initialization, solving the
relaxed problem, and updating multipliers, with conditions
to be satisfied at each step for algorithm convergence and
for surrogate dual costs to be lower bounds on the optimal
feasible cost [23]. The above three steps for the payment cost
minimization problem are presented below. For notational
simplicity, let y represent the vector of the decision variables

, and represent the vector of the multipliers
within this subsection.

Initialization: Initial multipliers and decision variables are
selected to satisfy the following “Surrogate Initialization Con-
dition”:

(31)

where is the augmented Lagrangian (30), is the optimal
dual value, and the superscript “0” indicates the 0-th iteration.
Condition (31) states that the initial surrogate dual cost
should be less than the optimal dual value as required for the
induction of [23, Proposition 4.1 ].

Solving the Relaxed Problem: Given multiplier vector at
the th iteration, surrogate optimization does not require the

with

(30)
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relaxed problem to be optimally solved. Rather, according to
the “Surrogate Optimization Condition” [23, Eq. 28], solution

to the relaxed problem is only required to be “better than”
the one in the previous iteration, i.e.,

(32)

The satisfaction of (32) implies that the surrogate subgradient
at the th iteration forms an acute angle with the direction to-
ward the optimal multiplier vector. Our relaxed problem is thus
optimized with respect to a particular supply bid one at a time
until (32) is satisfied. Since the augmented Lagrangian (30)
includes cross-product terms between and other deci-
sion variables, the relaxed problem has different structures over
its discontiguous subregions. As a result, if other variables are
fixed at their latest values in optimizing a bid, the solution may
be trapped in one subregion and (32) cannot be satisfied. A sim-
ilar situation has been illustrated by [14, Fig. 1]. Our approach is
to adjust other decision variables as needed in optimizing a bid,
with the goal to obtain lower surrogate dual cost to satisfy
(32).

Updating Multipliers: Once a subproblem solution satisfying
(32) is obtained, a surrogate subgradient is used to update mul-
tipliers with a proper stepsize. The surrogate subgradient is a
vector whose components are associated with corresponding
multipliers. Similar to a traditional subgradient, these compo-
nents are obtained as the levels of constraint violations, e.g., the
components associated with and , respectively, are

and (33)

(34)

The surrogate subgradient is then used to update multipliers
as

and (35)

(36)

The stepsize should satisfy the following “Surrogate Step-
size Condition” [23, Eq. 27]:

(37)

where is the L2 norm of the surrogate subgradient. The
satisfaction of (37) and (31), (32) guarantees a surrogate dual
cost to be a lower bound on the optimal dual cost [23, Propo-
sition 4.1]), and therefore on the primal optimal cost as a re-
sult of the weak duality theorem [19]. Condition (37)
utilizes the optimal dual cost , which is unknown in general.
The estimation of and issues on the possible violation of (37)
caused by overestimation will be discussed in Section III-F.

D. Forming and Solving Supply Bid Subproblems

Based on the above discussion, a supply bid subproblem, e.g.,
for the th bid at node , is formed by taking the relaxed problem
as a whole and is optimized with respect to its bid variables

. For simplicity of presentation, let
represent the collection of terms pertaining to hour from the
augmented Lagrangian (30) with the exception of . Then
the supply bid subproblem is

with

(38)

In (38), except that depend on the bid’s selection sta-
tuses at two consecutive hours and , the rest of are addi-
tive in hours. Therefore dynamic programming (DP) is used to
solve this subproblem where hours are stages, bid status (“On”
and “Off”) for each hour are states, is the stage-wise cost,
and is the state transition cost. In view that in (38)
depends on , , , , and at hour
, these variables need to be determined to evaluate for each

state ( or 1) at the hour. Since their latest available values
may not lead to the satisfaction of surrogate optimization condi-
tion (32), these variables are tentatively adjusted as needed for
each state to obtain low stage-wise costs so that (32) is likely to
be satisfied. The optimal On/Off statuses are then de-
termined by DP, and other variables are updated by using their
values associated with . Details are presented below.

To evaluate for a particular state (“On” or “Off”),
of other supply bids are first determined since con-

tinuous variables such as LMPs depend on the selection of bids
through economic dispatch. These assume their
latest available values, and are adjusted only when together
with they do not form a feasible bid selection as detected
by applying Phase I of the simplex method to the corresponding
economic dispatch problem. To adjust , simple
heuristics are used to sequentially examine system power
balance constraints (3) and transmission capacity constraints
(19) as follows. For the system power balance constraint (3)
at hour , the minimum and maximum total generation levels
under the selected bids are first calculated based on supply bid
capacities (4). If the maximum level cannot meet the system
demand , then the least expensive bids in terms
of amortized per MW costs (the sum of energy and startup
costs divided by the bid capacity) that are currently off are
sequentially selected until the demand can be met. Likewise,
if the minimum total generation level exceeds the system
demand, the most expensive “On” bids in terms of amortized
costs will be sequentially deselected. For transmission capacity
constraints (19) at hour , the minimum and maximum power
flows in line under the selected bids are calculated based on
(4) and (7). If the minimum flow exceeds , some “On”
bids with positive power transfer distribution factors (PTDF)
in (7) are turned off and some “Off” bids with negative PTDFs
are turned on. These are sequentially done in the descending
order of the absolute values of PTDFs until the minimum flow
is less than . Similar adjustment is made if the maximum
flow is less than . If the above procedure does not yield
a feasible selection of bids, the cost for the state under
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consideration is set to be a large number and the algorithm
continues to evaluate remaining stage-wise costs.

With properly adjusted for the state under
consideration, , , , , and at hour can be
determined by solving the corresponding economic dispatch
problem. In view that these variables are continuous variables,
they are approximately optimized by using first order optimality
conditions for simple analytic solutions in the following subsec-
tion to reduce computational requirements. The corresponding
stage-wise cost associated with the state under considera-
tion ( or 1) is then calculated. With stage-wise costs for
all states and all stages obtained, dynamic programming is used
to determine the optimal selection following [2].
Variables , , , , and are then updated
by their values associated with .

After solving the above bid subproblem, the surrogate opti-
mization condition (32) is examined. If the condition is satis-
fied, then multipliers are updated. Otherwise, another bid sub-
problem is solved.

E. Adjusting Other Continuous Variables Within a Supply
Bid Subproblem

In solving the above supply bid subproblems, bid levels,
, , and are adjusted by using simple analytical re-

sults from first order optimality conditions of the augmented
Lagrangian (30) as presented below.

Determining Bid Levels: Consider the th bid at node for
hour . If the bid is “Off,” its level should be zero. Oth-
erwise, is determined by projecting solution of the first
order optimality condition onto the feasible
set , i.e., see (39) at the bottom of the page.

Determining LMPs: To determine , the first order
optimality condition is used to obtain

(40)

Solution for is obtained in a similar way.
Determining ’s and ’s: Bid capacity price is

set to be zero if the corresponding bid is off, i.e., .

Otherwise, is obtained by using
and (11) as follows:

(41)

Solutions for , , and are obtained in a similar
way.

F. Updating Multipliers

As presented in Section IV-C, the surrogate stepsize condi-
tion (37) should be satisfied when multipliers are updated. Since
the optimal dual value in (37) is unknown in general, it has
to be estimated during the solution process. In the following, a
method for estimating is presented, and the ramifications are
discussed.

Based on the weak duality theorem [19], a primal feasible
cost is an upper bound on . Also, a surrogate dual cost is a
lower bound according to [23, Proposition 4.1] if all the three
conditions (31), (32), and (37) are satisfied. An estimated op-
timal dual value is thus obtained as

(42)

where and are, respectively, the lowest primal feasible
cost obtained thus far and the surrogate dual cost at the th
iteration. While is readily available in the solution process,

needs to be calculated based on a primal feasible solution.
Such a solution, however, cannot be easily obtained by using
simple heuristics to satisfy all constraints. Our approach is to
solve the economic dispatch problem (8) for the current set of
selected supply bids by using the Simplex method. If there is
no feasible solution, then the bid selection statuses are adjusted
by using the heuristics of Section III-D. If the adjusted statuses
are still infeasible, the value of from the previous iteration
is used. Also for computational efficiency, feasible solutions are
constructed every few iterations instead of each iteration.

With a possibly overestimated optimal dual cost from
(42), the resulting stepsize may violate the surrogate stepsize
condition (37). As a result, the surrogate dual cost is not guar-
anteed to be a lower bound on the optimal primal cost, leading
to the difficulty of evaluating solution quality. No theoretical
results have yet been developed to guarantee the satisfaction of
(37). Our numerical testing experience on small problems sug-
gests using small step sizes for large and applying adaptive
stepsize rules of traditional subgradient method [33]. Neverthe-
less, the surrogate dual costs cannot be used as lower bounds on

to evaluate the quality of a solution.

(39)
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Fig. 1. Flow chart of the algorithm (spread update multipliers).

G. Obtaining Feasible Solutions

The overall algorithm is summarized in Fig. 1. The initial-
ization assigns power to bids in the ascending order of their
amortized per MW costs (the sum of energy and startup costs
divided by the bid capacity). The regularization parameter in
(26)–(29) is reduced by half every few iterations. The algorithm
terminates when the level of constraint violation is less than a
specified threshold over a few iterations, or when the number of
iterations is greater than a specified value. A primal feasible so-
lution is then constructed by the procedures used to obtain in
(42). This solution is compared to the solution associated with
the lowest feasible cost obtained thus far, and the one with the
lower total payment cost is chosen to be the problem solution.

To analyze the computational complexity of the algorithm,
let be the number of outer loops in Fig. 1 required for con-
vergence, be the number of inner loops required for the sat-
isfaction of surrogate optimization condition, and be the av-
erage computational time for solving a bid subproblem. Based
on our testing experience, is more or less independent of the
problem size,10 is usually less than the total number of bids
(i.e., ), and is the major contributor to the complexity
based on our testing experience. By taking as a conserva-
tive estimate for , the algorithm complexity is approximately
represented by

(43)

The time in (43) is then examined by analyzing the com-
plexity of Dynamic Programming (DP) for solving bid subprob-
lems. The DP process presented in Section III-D has stages
(e.g., ), two states at each stage (i.e., “Off” and “On,”
with the bid’s generation level optimized for the “On” state

10N is affected by the tolerance level for terminating the outer loop. Here we
assume that the same tolerance level is used for problems with different sizes.

Fig. 2. Three-node transmission network.

without discretization), and four state transitions between two
consecutive stages, regardless of problem scale. The DP process
therefore has a constant state space. However, the number of
decision variables adjusted in evaluating a stage-wise cost as
presented in Section III-D increases linearly with the problem
size since these variables include bid levels (with the number of

), , , and . Thus the complexity
of DP including the adjustments is approximately proportional
to the total number of these variables, i.e., . As
a result, (43) can be approximated as

.

IV. NUMERICAL RESULTS

The above algorithm for payment cost minimization has been
implemented in C++ and run on a Pentium-4 2.79-GHz PC with
512 MB memory. In this section, three examples are presented.
Example 1 examines the impact of transmission congestion, and
compares the results of payment cost minimization with those of
bid cost minimization. Example 2 uses a five-bus example based
on ISO training document [21] to examine the solution quality
of our algorithm by comparing results with optimal solutions
obtained from exhaustive search, and verifies the effectiveness
of the regularization approach. Example 3 then supports the an-
alytical results for algorithm complexity in Section III by testing
modified IEEE 24-bus, 48-bus, and 73-bus Reliability Test Sys-
tems [35] with Monte Carlo simulations for randomly selected
load profiles and supply bids. Complete testing data and results
are available at http://www.engr.uconn.edu/msl/.

Example 1: Consider a four-bid two-hour problem modified
based on Example 1 of [14] without transmission. (The capacity
of bid 3 at hour 2 is increased from 30 MW to 40 MW.) A
three-node transmission network in Fig. 2 is assumed with equal
reactance and zero resistance for all transmission lines. The line
from node 1 to node 2 and the line from 2 to 3 are assumed to
have sufficient capacities, e.g., 200 MW. For the line from node
1 to node 3, two cases are considered to compare the non-con-
gested and congested situations. Since DC power flow calcula-
tion suggests that the result by using the MCP algorithm of [14]
without transmission leads to 80 MW flow in that line at hour
2, the capacity of that line is considered to be 85 MW ( 80) for
the non-congested Case 1 and 75 MW ( 80) for the congested
Case 2.

Case 1: : The testing result shows that for
both hours, bids 1 and 2 with the lowest bid prices and zero
startup costs are selected at their maximum capacities (e.g., 60
MW for both bids at hour 2) and bid 4 provides the remaining
power (e.g., 30 MW at hour 2). These results are identical to
those under the MCP model in [14]. Also, the LMPs at each
hour equal the MCP of that hour as a natural result of (22) with
no transmission congestion. The CPU time is 0.38 s, close to
0.33 s obtained under the MCP model.
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TABLE I
RESULTS FOR EXAMPLE 1, CASE 2

Fig. 3. Five-node transmission network.

Case 2: : The payment cost minimization
solution is presented in Table I. Compared with the solution in
the above non-congested case 1, bid 2 at node 1 generates less
power at hour 2 (52.5 MW as compared to 60 MW) to serve the
remote demand at node 3 through transmission while bid 4 at
node 3 generates more at the hour (37.5 MW as compared to
30 MW) for its local demand. The transmitted power in the line
from nodes 1 to 3 is thus kept within its capacity. For compar-
ison, the bid cost minimization solution obtained by exhaustive
search is also presented in Table I. This solution selects bid 3
(with high bid price but low startup cost) for its lower bid cost
as compared to bid 4 (with low bid price but high startup cost).
In contrast, payment cost minimization selects bid 4 for lower
total payment as a result of lower LMPs because of the low bid
price of bid 4. It can be seen from Table I that payment cost
minimization, as compared to bid cost minimization, leads to
a consumer payment reduction of $7000 ($16 300–$9300) at a
relatively small increase of $87.5 ($6475–$6387.5) in the total
bid cost.11

Example 2: Consider a five-node one-hour problem in Fig. 3
based on the transmission network of [21], with the transmis-
sion line reactance (under the per-unit system) and the demand
shown in the figure. All lines except the one from node 1 to
node 5 are assumed to have sufficient capacities, e.g., 400 MW.
For the line from nodes 1 to 5, two cases are considered to
compare the non-congested and congested situations. Since DC
power flow calculation suggests that the result by using the MCP
method of [14] without transmission leads to 267 MW flow in
that line, the capacity of that line is considered to be 280 MW
( 267) for the non-congested Case 1 and 240 MW ( 267) for

11This can be interpreted as the tradeoff between consumer payment and pro-
duction efficiency assuming bids represent true production costs, an assumption
that does not hold in practice [39]. The tradeoff has been studied without that
assumption, and preliminary results have been reported in [36].

TABLE II
SUPPLY BIDS FOR EXAMPLE 2

TABLE III
RESULTS FOR CASES 1 AND 2 IN EXAMPLE 2

TABLE IV
COMPUTATIONAL TIME FOR CASES 1 AND 2 IN EXAMPLE 2

the congested Case 2. Single-block supply bids are described in
Table II with bid 1 assumed on and other bids assumed off at
hour 0.

The solutions for both cases are presented in Table III. The
280 MW transmission capacity in Case 1 allows the two low-
price bids 1 and 2 at nodes 1 and 2, respectively, to generate at
their capacities to serve remote load at nodes 3–5 without cre-
ating transmission congestion. By contrast, the reduced trans-
mission capacity in Case 2 causes a reduction of the generation
of the low-price bid 2 at node 2 (from 210 MW to 176 MW)
and an increase of the generation of the expensive bid 4 at node
5 (from 90 MW to 124 MW) to keep the transmitted power
within its capacity. For each case, the solution was verified to
be optimal by comparing payment costs of all the possible bid
selections , demonstrating solution optimality for this
small problem. An interesting observation is that the congested
Case 2 has lower LMPs and consequently a lower payment cost
as compared to those of the non-congested Case 1. An explana-
tion for this is that the transmission congestion in Case 2 restricts
the low-price bid 2 at node 2 from generating at its full capacity,
making it a marginal bid to set low LMPs.

The average number of on-off status adjustments of other bids
per evaluation of stage-wise cost in solving a bid subproblem
(Section III-D), the number of iterations, and CPU time for the
two cases are presented in Table IV. Their values for the non-
congested case 1 are smaller than those for the congested case 2,
implying that more computations are needed to obtain solutions
with transmission congestion.



542 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 23, NO. 2, MAY 2008

Fig. 4. IEEE one-area RTS-96.

TABLE V
SUPPLY BIDS IN EXAMPLE 3

Example 3: Consider a problem with 24 buses and 32 supply
bids over a 24-h period based on the IEEE one-area Reliability
Test System of 1996 (RTS-96) [35] depicted in Fig. 4. The
system description includes reactance and capacities of trans-
mission lines, hourly system load for a year, percentages of
system load across the buses, and heat-rates of generating units.
Following [4], the system is divided into two zones in Fig. 4,
with 46.74% of system load but only 20.09% of total genera-
tion capacity located in zone I. Therefore, power flows from the
export zone II to the import zone I. To demonstrate the impact of
transmission capacity constraints, the five lines connecting the
two zones are assumed to have a reduced 200 MW capacity each
while other lines follow their capacity data in the test system.
Ten test cases including one for the peak-load day of the year
were run. For each case, its 24-h load data were selected from
daily load profiles of the year of the test system, and thirty-two
supply bids assuming identical over the 24 h were randomly
generated with Gaussian distributions based on unit parameters
presented in Table V.

Consider first the case for the peak-load day of the year. The
result is analyzed below. The hourly system demand and pay-
ment cost are depicted in Fig. 5. Observe that the payment cost

Fig. 5. System demand and payment costs for Example 3.

Fig. 6. Load-weighted average LMPs in zones I and II for Example 3.

Fig. 7. LMPs at hour 4 and hour 14 for Example 3.

curve follows the demand curve, indicating higher payment cost
for higher system demand in general. The hourly zonal prices
(load-weighted average of nodal LMPs) for zones I and II are
depicted in Fig. 6. It can be seen that for most hours, the price
of import zone I is higher than that of export zone II. The only
hours for which the two zones have equal zonal prices are hours
3–6 when system demands are the lowest of the day and there
is no congestion in the lines connecting the two zones.

To examine the impact of transmission congestion, LMPs for
peak hour 14 and off-peak hour 4 at various nodes are depicted
in Fig. 7. Observe that LMPs at hour 14 vary across locations as
a result of transmission congestion. By contrast, a uniform LMP
is obtained for all nodes at hour 4 with a system load of only 56%
of the peak load. It can also be seen that zone I receives higher
LMPs at the peak hour 14 than the off-peak hour 4 as expected.
However, nodes 19, 20, and 23 in zone II have lower LMPs
during hour 14 as compared to hour 4. An explanation for this
phenomenon is that transmission congestion at hour 14 restricts
the low-price bids at these nodes from providing capacity power
to other nodes, making them the marginal bids to set low LMPs
for these nodes.

With ten test cases including the one for the peak-load day,
the average and (defined in Section III-G), and the
average and standard deviation of CPU time for the 24-bus
problem are presented in Table VI. To test algorithm scalability
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TABLE VI
COMPUTATIONAL TIME FOR 24-BUS AND 73-BUS PROBLEMS IN EXAMPLE 3

and to examine the analytical result for algorithm complexity in
Section III, a 48-bus problem based on the IEEE two-area RTS
[35] (interconnecting two duplicated Fig. 4) was also tested for
ten cases. For each case, the demand profile and supply bids for
one area were directly copied from the corresponding 24-bus
case and those for the other area were created by using the same
procedures as presented above. Similarly, a 73-bus problem
based on the IEEE three-area RTS was tested for ten cases.
Results for the 48-bus and 73-bus problems are also presented
in Table VI.

It can be seen that the average CPU time for the 48-bus
problem is about five times of that for the 24-bus problem. Ac-
cording to our analysis in Section III-G, the computational time
should increase to four times of that for the 24-bus example
since the numbers of nodes, lines, and bids are all doubled. The
testing result (five times) is reasonably close to the analysis
result (four times). For the 73-bus problem, the computational
time is about twelve times of that for the 24-bus problem,
which is also reasonably close to the analysis result (nine
times) in view of the increase of the average as compared
to the 24-bus example. While it is difficult for these testing
results alone to conclude the polynomial algorithm complexity,
they are roughly consistent with the complexity analysis in
Section III, and therefore support the analytical result. For the
three problems, the standard deviations of the CPU time are
not small as a result of varying computational requirements for
tests with low load (implying less congestion) and those with
high load (implying more congestion).

V. CONCLUSION

Currently, most ISOs in the U. S. conduct bid cost minimiza-
tion in auctions and settle the payments with market-clearing
prices. An alternative auction mechanism that minimizes the
consumer payment cost has been brought to recent discussions.
In this paper, the payment cost minimization problem with
transmission capacity constraints is formulated as an MPEC. A
regularization method is first used to satisfy constraint qualifi-
cations. The resulting problem is pseudo-separable in terms of
bids as a result of having LMPs in the formulation as decision
variables. Surrogate optimization is thus used to overcome this
difficulty so that the problem is solved by optimizing bids one
at a time within the augmented Lagrangian relaxation frame-
work.12 Numerical results show that the method is promising
to solve practical problems, and payment cost minimization
leads to consumer payment savings as compared to bid cost
minimization for the same set of supply bids. The method

12While the method is still in its early stage and requires further develop-
ment, we believe that it would gradually grow into a robust algorithm as many
other algorithms have experienced in the past, e.g., mixed integer programming
methods for solving bid-cost minimization.

shall facilitate further study of the payment cost minimization
auction, and open the door for solving other non-decomposable
and NP-hard problems.
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